A model of hydrodynamic interaction between swimming bacteria.

نویسندگان

  • Vitaliy Gyrya
  • Igor S Aranson
  • Leonid V Berlyand
  • Dmitry Karpeev
چکیده

We study the dynamics and interaction of two swimming bacteria, modeled by self-propelled dumbbell-type structures. We focus on alignment dynamics of a coplanar pair of elongated swimmers, which propel themselves either by "pushing" or "pulling" both in three- and quasi-two-dimensional geometries of space. We derive asymptotic expressions for the dynamics of the pair, which complemented by numerical experiments, indicate that the tendency of bacteria to swim in or swim off depends strongly on the position of the propulsion force. In particular, we observe that positioning of the effective propulsion force inside the dumbbell results in qualitative agreement with the dynamics observed in experiments, such as mutual alignment of converging bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrodynamic Forces and Band Formation in Swimming Magnetotactic Bacteria

Dense suspensions of magnetotactic bacteria form long, thin, stable bands perpen­ dicutar to the common, net direction of motion of the cells in a magnetic field. A mechanism for this phenomenon is proposed in which the hydrodynamic coupling between two swimming cells is described in terms of an approximate, far-field solution for the flow around one swimming cell. The calculated hydrodynamic i...

متن کامل

Hydrodynamic Trapping of Swimming Bacteria by Convex Walls.

Swimming bacteria display a remarkable tendency to move along flat surfaces for prolonged times. This behavior may have a biological importance but can also be exploited by using microfabricated structures to manipulate bacteria. The main physical mechanism behind the surface entrapment of swimming bacteria is, however, still an open question. By studying the swimming motion of Escherichia coli...

متن کامل

Host cell surfaces induce a Type IV pili-dependent alteration of bacterial swimming

For most pathogenic bacteria, flagellar motility is recognized as a virulence factor. Here, we analysed the swimming behaviour of bacteria close to eukaryotic cellular surfaces, using the major opportunistic pathogen Pseudomonas aeruginosa as a model. We delineated three classes of swimming trajectories on both cellular surfaces and glass that could be differentiated by their speeds and local c...

متن کامل

Computationally-validated surrogate models for optimal geometric design of bio-inspired swimming robots: Helical swimmers

Keywords: Micro-swimming Micro-flows Resistive force theory Hydrodynamic interaction Bio-inspired robots Surrogate models a b s t r a c t Research on micro-swimming robots without tether is growing fast owing to their potential impact on minimally invasive medical procedures. Candidate propulsion mechanisms of robots are vastly based on microorganisms with rotating helical tails. For design of ...

متن کامل

Hydrodynamic attraction of swimming microorganisms by surfaces.

Cells swimming in confined environments are attracted by surfaces. We measure the steady-state distribution of smooth-swimming bacteria (Escherichia coli) between two glass plates. In agreement with earlier studies, we find a strong increase of the cell concentration at the boundaries. We demonstrate theoretically that hydrodynamic interactions of the swimming cells with solid surfaces lead to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bulletin of mathematical biology

دوره 72 1  شماره 

صفحات  -

تاریخ انتشار 2010